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SUMMARY

A new algorithm, which combines the spectral element method with elastic viscous splitting stress
(EVSS) method, has been developed for viscoelastic �uid �ows in a planar contraction channel. The
system of spectral element approximations to the velocity, pressure, extra stress and the rate of defor-
mation variables is solved by a preconditioned conjugate gradient method based on the Uzawa iteration
procedure. The numerical approach is implemented on a planar four-to-one contraction channel for a
�uid governed by an Oldroyd-B constitutive equation. The behaviour of the Oldroyd-B �uids in the con-
traction channel is investigated with various Weissenberg numbers. It is shown that numerical solutions
obtained here agree well with experimental measurements and other numerical predictions. Copyright
? 2003 John Wiley & Sons, Ltd.

KEY WORDS: spectral element method; viscoelastic �ow; planar contraction channel; an Oldroyd-B
�uid

1. INTRODUCTION

Despite much progress in the prediction of �uid �ow, viscoelastic �ow is an example of a
�eld in which numerical techniques are still generally inadequate to describe �ows in regimes
of technological importance. This inadequacy is particularly acute when one considers �ows
with large stress gradients for time-dependent �uids. A geometrical singularity, such as a
discontinuous boundary point or a boundary with discontinuous boundary conditions, is a
principle source of steep gradients. The aim of this study is to provide insight into the nu-
merical behaviour associated with a spectral element approach simulating viscoelastic complex
�uids with di�erential equations as the base of the model rather than the alternative base such
as an integral formulation.
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Viscoelastic �uids are polymeric materials in which the state of stress depends on the
history of the deformation, in contrast to a Newtonian �uids in which the stress depends only
on the instantaneous rate of deformation. Viscoelastic �uids may exhibit behaviour that di�ers
signi�cantly from that of Newtonian �uid. In many cases, the understanding of viscoelastic
rheology is poor. One reason is the approximate nature of the constitutive equations [1, 2];
there is no systematic way of determining the range of validity of a model in describing
a speci�c �uid. All models are at most reasonable approximations in a limited range of
�ow conditions. Even if the validity of the constitutive equation is taken for granted, its
mathematical complexity rarely allows the derivation of analytical results, except for the simple
cases of viscoelastic �ows. It is, in this context, that direct numerical simulations are called for,
both to test constitutive models and as a tool to analyse and predict rheological phenomena.
The particular �ow problem addressed here is a four-to-one planar contraction channel

�ow, widely cited in References [1, 3, 4]. This geometry is popular since it is of technological
importance for the polymer processing industry and also exhibits signi�cant �ow variation
with changes in �uid elasticity. The constitutive model considered here is an Oldroyd-�uid
[2]. This problem manifests su�ciently complex �ow phenomena and provides a challenge
to the numerical algorithms and the constitutive models, in particular, for highly elastic �uid
behaviour. The understanding of the problem is therefore of practical importance not only
in the study of fundamental �ow property behaviour but also in the application to many
industries.
The planar contraction channel �ow problems, over the years, have been solved by a variety

of numerical techniques. Most advances have been made through the application of �nite-
element methods. These methods include the mixed Galerkin �nite-element method [5–7],
the explicitly elliptic momentum equation formulation (EEME) [8], and the elastic viscous
splitting stress formulation (EVSS) [9–11]. A variety of alternative formulations have been
developed during the last decade as well, for instance, streamline integration methods [12],
�nite-volume methods [13–15] and the hybrid �nite volume and element methods [16], but
these are not considered in this paper although some references are made for comparison
purposes. Reviews covering these works can be found in the book of Huilgo et al. [17].
The mixed Galerkin �nite-element methods have been the most popular approaches, and

one particular approach that has been employed with considerable success is the streamline
upwind stress sub-element method of Marchal and Crochet [7, 18], where the velocity �eld is
interpolated by means of the Hermitian shape functions for satisfying an equivalence criterion
between the velocity–pressure and the stress formulations. The method of EEME developed by
King et al. [8] is based on the idea of solving an elliptic steady-state problem, which avoids
a change of type to hyperbolic form by some special treatments. The advantage of the EEME
method is the enforced elliptic nature in the momentum equation, which is maintained as the
�uid elasticity is increased. However, the philosophy of the EEME formulation, involving a
strongly elliptic momentum system and a properly represented hyperbolic constitutive equation,
was accepted as a way to improve viscoelastic simulation methods. The EVSS method was
�rst developed by Rajagopalan et al. [10] to generalize the EEME method and focus on
constitutive models containing a purely viscous component. There are two principal features
associated with this method, stress splitting and recovery of velocity gradients. This method
is bene�cial in maintaining the mathematical properties of the momentum and continuity
problems, the proper treatment of the hyperbolic constitutive equation remains an important
part of the overall algorithm. Furthermore, Rajagopalan et al. [10] have shown that the EVSS
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method is more accurate and stable than the EEME method. Recently, Guenette and Fortin [19]
have introduced a modi�cation of the EVSS formulation, known as the discrete EVSS method
(DEVSS). In this method, a stabilizing elliptic operator is introduced in the discrete version
of momentum equation. This is similar to the EVSS method but the objective derivative of
the rate of the deformation tensor is avoided. The reader is referred to an extensive review of
Baaijens [20] on the development of the EVSS methods. The spectral element has not been
used very often with non-Newtonian �uids, but there are still some works. Two recent papers
adopting the spectral element approach for viscoelastic �uids are those of Chauviere et al.
[21, 22] and Li et al. [23]. Chauviere et al. used a spectral element method to simulate a
viscoelastic �uid past a cylinder in a channel, while Li et al. considered a non-Newtonian
�uid in the journal bearing problem with the spectral element approximations.
In this study, we present a spectral element method combined with the EVSS approach

based on the Gauss–Lobatto–Legendre polynomials to solve a four-to-one planar contraction
channel �ow with an Oldroyd-B �uid. In the spectral element method, a complex domain is
decomposed into simpler domains called spectral elements, in each of which a spectral repre-
sentation is used to represent each of the dependent variables. The preconditioned conjugate
gradient method is used to solve the resulting system of algebraic equations. The numeri-
cal algorithm proposed in this paper does not degrade accuracy to enhance stability. Indeed,
through the consistency of the approach proposed, a high degree of accuracy is a�orded with
the spectral approximations combined with the EVSS approach.
The structure of this paper is as follows: In Section 2, we introduce the governing sys-

tem of equations and the model of an Oldroyd-B �uid, and reformulate the equations in
two-dimensional Cartesian co-ordinates. In Section 3, we brie�y review the spectral element
approximations in the Galerkin variational formulations and present a numerical scheme based
on the EVSS procedure. A discussion of the choice of the approximation function spaces for
the stress and deformation tensor are also given in this section. In Section 4, we present an
Uzawa algorithm to decouple the velocity from the formulation of the pressure in the mo-
mentum and continuity equations, and develop a preconditioned conjugate gradient iterative
method to solve the discretization equations for the velocity, pressure, extra stress and the
rate of deformation. In Section 5, we present the simulation results with an Oldroyd-B �uid
through a planar four-to-one contraction channel, and show the numerical results are in good
agreement with those of the other numerical predictions and the experimental measurements.
A conclusion �nally follows in Section 6.

2. MATHEMATICAL MODELLING

The mathematical model for viscoelastic �ow involves the solution of a set of conservation
and constitutive equations. For the isothermal �ow of an incompressible �uid in the absence
of a body force, the conservation equations for momentum and mass can be, respectively,
written as

�
(
@u
@t
+ u · ∇u

)
=−∇p+∇ · � (1)

∇ · u=0 (2)
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where � is the �uid density, p is the pressure, u is the velocity vector, and � is the extra-
stress tensor �eld. Equations (1) and (2) are not complete without an expression of the extra
stress tensor �. In general, a constitutive equation or (a rheological equation) is used to de�ne
such an extra stress tensor, which expresses a relationship between the stress and the velocity
gradient and describes the rheology behaviour of a viscoelastic �uid. constitutive model of
the integral or di�erential type. In this paper, a di�erential constitutive Oldroyd-B �uid model
is used and de�ned as

�+ �1
∇� =2 �(D+ �2

∇
D) (3)

where �1 is the relaxation time, �2 is the retardation time and � is the shear viscosity. D is the

rate of deformation tensor and
∇� is de�ned as an upper-convected derivative of the viscoelastic

extra stress. They are de�ned by

D= 1
2(∇u+ (∇u)T) (4)

and

∇� = @�
@t
+ u · ∇�− � · (∇u)− (∇u)T · � (5)

Equation (3) is reduced to a Newtonian model when �1 = �2 = 0 and to the upper-convected
Maxwell (UCM) model when �2 = 0.
Following Reference [10], the viscoelastic extra stress � can be split into two parts in terms

of a viscous and a viscoelastic contributions

�= �1 + �2 (6)

where �1 is the elastic stress part and de�ned by

�1 + �
∇� 1 = 2 �1D

and �2 denotes the viscous stress de�ned by

�2 = 2 �2D (7)

where �= �1 + �2, and �1 is the viscosity of the viscoelastic contribution and �2 is the
viscosity of the Newtonian contribution. Substitute Equation (6) into Equation (3) and equate

the coe�cients of D and
∇
D with �2 = �1�2=(�1+�2), we can rewrite the Oldroyd-B constitutive

equation as

�1 + �1
∇� 1 = 2 �1D (8)

Equations (1), (2) and (8) are completely de�ned for an incompressible viscoelastic �ow of
an Oldroyd-B �uid subject to the appropriate boundary conditions. For the problems solved
in later sections, we will choose the geometry in such a way that fully developed velocity
pro�les can be imposed in entry and exit sections. Moreover, the extra-stress tensor �1 based
on a fully developed �ow will also be imposed at the entry section.
For numerical �ow simulations, we are interested in the EVSS formulations of the problem

which allows one to introduce the rate of deformation tensor [10] as an additional unknown
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in order to maintain the momentum and continuity equations as a fully elliptic equation
system with well-understood mathematical and numerical properties. A change of variables is
introduced with

d=D= 1
2(∇u+ (∇u)T) (9)

and

S= �1 − 2 �1d (10)

Substituting (9) and (10) into the momentum equation (1) and using the expression

∇ · S=∇ · �1 − 2 �1∇ · d
yields the following momentum, continuity and constitutive equations

�
(
@u
@t
+ u · ∇u

)
=−∇p+∇ · �− 2 �1∇ · d+ 2 �∇ ·D (11)

∇ · u=0 (12)

�+ �1
∇� =2 �1D (13)

where

d=D (14)

Note that �1 has been replaced by � in these equations. Although we have added the same
quantity to both sides of the momentum equation, the real modi�cation will appear when we
consider a di�erent representation for d and D in the discrete form of the above system of
equations which will be solved in a di�erent discrete function space. If the exact solution is
recovered, Equation (14) vanishes. However, in a �nite-element calculation this is generally
not the case [20]. It must be emphasized that the stress splitting formulations are bene�cial in
maintaining the mathematical elliptic properties of the momentum and continuity equations,
but the proper treatment of the hyperbolic constitutive equation remains an important part of
the overall algorithm.
We now rewrite Equations (11)–(14) in component forms assuming two-dimensional �ow

in Cartesian co-ordinates

�
(
@ui

@t
+ uj

@ui

@xj

)
=− @p

@xj
+

@�ij
@xj

− 2 �1 @dij

@xj
+ �

@2ui

@x2j
(15)

@ui

@xi
=0 (16)

�ij + �1

(
@�ij
@t
+ ul

@�ij
@xl

)
= �1

(
@ui

@xj
+

@uj

@xi

)
+ �1

(
�il

@uj

@xl
+ �jl

@ui

@xl

)
(17)

dij =
1
2

(
@ui

@xj
+

@uj

@xi

)
; ∀i; j; l=1; 2 (18)
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Dimensionless variables are then introduced

x∗=
x
L
; y∗=

y
L
; u∗i =

ui

U
; t∗=

Ut
L

; p∗=
Lp
�U

; �∗ij=
L
�U

�ij; d∗
ij =

L
U

dij

where U is a characteristic velocity and L is a characteristic length. Substituting these expres-
sions into (15)–(18), dropping the symbol ∗ and rearranging the resulting equations gives the
following dimensionless system of equations:

Re
(
@ui

@t
+ uj

@ui

@xj

)
=− @p

@xj
+

@�ij
@xj

− 2 (1− �)
@dij

@xj
+

@2ui

@x2j
(19)

@ui

@xi
=0 (20)

�ij +We
(
@�ij
@t
+ ul

@�ij
@xl

)
= (1− �)

(
@ui

@xj
+

@uj

@xi

)
+We

(
�il

@uj

@xl
+ �jl

@ui

@xl

)
(21)

dij =
1
2

(
@ui

@xj
+

@uj

@xi

)
; ∀i; j; l=1; 2 (22)

where �= �2=�1 determines the characteristics of the Oldroyd-B �uid; Re=�UL=� is the
Reynolds number, which expresses the ratio of the inertia forces to the viscous forces;
We= �1U=L is the Weissenberg number, which determines the elastic character of the �uid.
Notice that high values of We indicate a material response that is very solid-like, while low
values of the parameter represent small departures from normal viscous �uid behaviour.

3. THE SPECTRAL ELEMENT METHOD

In this study, the spectral element method is chosen for the spatial discretization of the
system of equations given in the previous section. In the spectral element method, a complex
domain is decomposed into simpler domains called spectral elements, in each of which a
spectral representation is used to represent each of the dependent variables. The spectral
element approach was �rst presented in Reference [24], and an excellent review was given by
Maday and Patera [25]. This method, like the spectral method, uses high-order polynomials
as trial functions, and like the �nite-element method, decomposes the computational domain
into a number of simpler domains on which local trial functions are de�ned. The hybrid
character of the spectral element method enables it to overcome the shortcomings of both the
spectral method and the �nite-element method but still retain their advantages. Since the trial
functions of the spectral element method are local, the method can handle complex geometries
easily. On the other hand, it is still a high-order weighted residual method, so the exponential
convergence rate is achieved as the degree of the polynomial approximation in each element
is increased [25]. In the following sections, a spectral element algorithm will be presented
with the EVSS method based on the model of an Oldroyd-B �uid.
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3.1. Variational formulation

In order to pose a weak formulation equivalent to the system of Equations (19)–(22), we
�rst introduce the following function spaces:

V0(�) = {�∈H 1
0 (�)} (23)

Q0(�) =
{
p∈L2(�) and

∫
�
p d�=0

}
(24)

where H 1
0 (�) denotes the subspace of H

1(�) of functions which are zero on the boundary

H 1
0 (�)= {�∈H 1(�); �=0 on �}

Let V (�) and Q(�) denote the spaces

V (�) =H 1(�)= {�∈L2(�); ∇�∈L2(�)}
Q(�) = {�∈L2(�)}

where L2(�) is the space of square integrable functions. The scalar product can be de�ned as

(�;  )=
∫
�
�(x) (x) dx; ∀�;  ∈H 1(�)

For the sake of simplicity, we choose, without loss of generality, the velocity �eld equal to
zero on �. After multiplying (19) by the weighting function �ui ∈V0(�), (20) by q∈Q0(�),
(21) by ��ij ∈V (�) and (22) by �dij ∈Q(�), and integrating by parts, we get the following
variational formulation for (19)–(22) as
Find (ui; p; �ij; dij)∈ (V0×Q0×V ×Q) such that

(
@ui

@xj
;
@ �ui

@xj

)
+ Re

(
@ui

@t
; �ui

)
−
(
p;

@ �ui

@xi

)

=
(
@�ij
@xj

; �ui

)
+ 2(1− �)

(
@dij

@xj
; �ui

)
− Re

(
uj

@ui

@xj
; �ui

)
; ∀ �ui ∈V0(�) (25)

(
@ui

@xj
; q
)
=0; ∀q∈Q0(�) (26)

We
(
@�ij
@t
+ ul

@�ij
@xl

; ��ij

)
+ (�ij; ��ij)−We

(
�il

@uj

@xl
+ �jl

@ui

@xl
; ��ij

)

=(1− �)
(
@ui

@xj
+

@uj

@xi
; ��ij

)
; ∀��ij ∈V (�) (27)

(
dij; �dij

)
=
1
2

(
@ui

@xj
+

@uj

@xi
; �dij

)
; ∀ �dij ∈Q(�) (28)
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Under certain conditions, one can prove that there exists a unique solution (ui; p; �ij; dij) to
the variational formulation (25)–(28), the details can be found in References [5, 26].

3.2. Spatial discretization

Consider the numerical solution of the weak formulation (25)–(28) in a domain � using the
spectral element method. The domain � is divided into a number of non-overlapping spectral
elements, �k ; k=1; : : : ; K , such that �=

⋃
�k and �k ∩�l= ∅; ∀k; l; k �= l. Each spectral

element �k is mapped onto the parent element �=[−1; 1]× [−1; 1]. The mapping is usually
performed using an isoparametric or trans�nite mapping. Therefore, we may associate with
each point (�; �)∈ � a unique point (x; y)∈�k .
With the above decomposition of �, the discretization of (23) and (24) calls for the de�-

nition of subspaces

Vh0⊂V0; Vh ⊂V; Qh0⊂Q0; Qh ⊂Q

In the sequel, the discretization of the variational formulations (25)–(28) can be rewritten as
Find (uih; ph; �ijh; dijh)∈ (Vh0×Qh0×Vh ×Qh), such that

(
@ui; h

@xj
;
@ �ui

@xj

)
h

+ Re
(
@ui; h

@t
; �ui

)
h
−
(
ph;

@ �ui

@xj

)
h

=
(
@�ij; h
@xj

; �ui

)
h

− 2(1− �)
(
@dij; h

@xj
; �ui

)
h

− Re
(
uj; h

@ui; h

@xj
; �ui

)
h

(29)

(
@ui; h

@xi
; q
)
h
=0 (30)

We
(
@�ij; h
@t

+ ul; h
@�ij; h
@xl

; ��ij

)
h
−We

(
�il;h

@uj; h

@xl
+ �jl;h

@ui; h

@xl
; ��ij

)
h

+
(
�ij; h; ��ij

)
h =(1− �)

(
@ui; h

@xj
+

@uj; h

@xi
; ��ij

)
h

(31)

(dij; h; �dij)h=
1
2

(
@ui; h

@xj
+

@uj; h

@xi
; �dij

)
h

(32)

∀ �ui ∈Vh0; q∈Qh0; ��ij ∈Vh; �dij ∈Qh

where

(f; g)h=
K∑

k=1

∫
�k

fg d�k
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In order to set up the spectral element discretization, it is necessary to choose a simple
basis to span a proper functional space for the numerical approximations. In the present work,
we use the Gauss–Lobatto–Legendre polynomials as a basis of the approximation space:

hi(�)=− (1− �2)L′
N (�)

N (N + 1)LN (�i)(�− �i)
(i=0; 1; : : : ; N ) (33)

where LN is the N th-order Legendre polynomial, L′
N is the �rst-order derivative and the

collocation points, �i, are given by

−1= �0¡�1¡ · · ·¡�N =1; ∀i ∈ {1; : : : ; N − 1}; L′
N (�i)=0 (34)

From the de�nition of hi(�), we obtain

hi(�j)= 	ij; ∀i; j ∈ {0; : : : ; N}
where 	ij is the Kronecker-delta symbol. There also exists a unique set of positive real numbers
wi, corresponding to �i; (06i6N ), such that the integration rule

∫ 1

−1
 (x) dx=

N∑
i=0

wi (�i) (35)

is exact for all polynomials  (x) of degree 6(2N − 1) on the interval [−1; 1]. Note that
one advantage of using the Gauss–Lobatto–Legendre polynomials as basis functions is that
we only have to deal with one set of grid points for interpolation and numerical quadrature.
Now we describe how we set up the spectral element approximation for the variational

problem (29)–(32). Let us denote by PN;K the space of all polynomials of degree N or less
de�ned over each parent element �, and choose the velocity �eld in Vh0 =H 1

0 (�)∩PN;K and
construct a Gauss–Lobatto–Legendre grid in the parent element �, we can expand the velocity
�eld in tensor product form

ukh(�; 
)=
N�∑
i=0

N
∑
j=0
uki; jhi(�)hj(
) (36)

where ukij= ukh(�
k
i ; 


k
j ) is the velocity at the Gauss–Lobatto–Legendre point (�

k
i ; 


k
j ) in the sub-

domain �k , and (x; y)∈�k → (�; 
)∈ �. Here N� and N
 represent the numbers of collocation
points in each of the spatial directions.
As for the �nite-element method, the velocity and pressure spaces must satisfy the Babuŝka–

Brezzi inf–sup compatibility condition in order to have a solvable system leading to a pressure
�eld that is not polluted by spurious pressure wiggles. In the framework of the spectral element
method, Maday et al. [25] have shown that a suitable choice for the pressure approximation
space is

Qh0 =Q0(�)∩PN−2; K

With this choice of the pressure approximation space, the dimension of Qh0 is only K(N −1)2
since function continuity is not enforced for functions in Qh0. However, the dimension of Vh0

is less than K(N + 1)2 due to the restriction that functions in Vh0 must be continuous across
sub-domain interfaces and must also satisfy Dirichlet boundary conditions on @�. With such a
choice of the pressure and velocity approximation spaces the inf–sup compatibility condition
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Figure 1. A typical spectral element con�guration: there are four elements in each picture, and eight
collocation points are chosen in both x and y directions. The velocity and extra stress are de�ned on
the Gauss–Lobatto–Legendre collocation points shown in the left �gure, the pressure and the rate of
deformation tensor are de�ned on the interior Gauss–Lobatto–Legendre points shown in the right �gure,

where ◦ denotes the interior nodes, while • denotes the boundary nodes.

is satis�ed [25]. Furthermore, it has been shown both numerically and theoretically that the
spectral element solution to the Stokes problem convergences exponentially as N →∞ for
problems having smooth solutions [25].
Therefore, we choose the pressure function in the space Qh0 and expand it on the interior

Gauss–Lobatto–Legendre points. Thus, the pressure approximation can be written as

pk
h(�; 
)=

N�−1∑
i=1

N
−1∑
j=1

pk
ij
�hi(�)�hj(
) (37)

where pk
ij=p(�k

i ; 

k
j ) is the pressure at the interior Gauss–Lobatto–Legendre points in �k , and

�hi is de�ned by

�hi(�)=− (1− �2i )L
′
N (�)

N (N + 1)LN (�i)(�− �i)

�∈ [−1; 1]; ∀i∈{1; : : : ; N − 1}
Figure 1 shows the nodal points for both the velocity and the pressure meshes for a regular
sub-domain con�guration. Note that the basis for velocity is continuous across sub-domain
interfaces, while the basis for the pressure is not.
Another important aspect of the discretization of viscoelastic �ow problems by the spec-

tral element method (or the �nite-element method) is the choice of approximation space for
the extra-stress tensor, since the extra-stress �elds for a viscoelastic �uid are generally more
complex than their corresponding velocity counterparts. In the velocity–pressure–stress for-
mulations, Gerritsma et al. [27] have shown that a second compatibility condition between
the discrete velocity and the extra-stress approximation is required and have also shown that
the problem is well posed provided one chooses the stress approximation space to contain
polynomials of at least the same degree as the velocity space. Hence, a simple choice of the
extra-stress space is Vh. With this choice the extra-stress approximation can be written as

�kh(�; 
)=
N�∑
i=0

N
∑
i=0
�kijhi(�)hj(
) (38)
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where �kij= �(�k
i ; 


k
j ). It should be noted that there are many ways of choosing the extra-stress

approximation function spaces, but we make no comments here about their relative merits
since it is beyond the scope of this paper.
The choice of the function spaces for the deformation tensor dij; h can be made in di�erent

ways. For example, if dij; h ∈∇Vh, one can substitute dij; h into (29) and obtain a classical dis-
crete formulation for the Oldroyd-B problem due to d≡D in (32). In general, the deformation
space should not be rich enough to fully represent any element in ∇Vh, (see Reference [10]).
In essence, guidance is still often lacking as to what kind of interpolations for the rate of
deformation are admissible. In this paper, we follow [10] and choose the rate of deformation
tensor approximation space expanded by the polynomials of the same degree as the pressure
space, namely,

Qh=Q(�)∩PN−2; K

In this de�nition, the rate of deformation tensor approximation can be expanded in the form

d k
h (�; 
)=

N�−1∑
i=1

N
−1∑
j=1

d k
ij
�hi(�)�hj(
) (39)

where d k
ij = d(�

k
i ; 


k
j ).

Figure 1 shows the spectral element con�gurations, in which the velocity and stress are
chosen at the Gauss–Lobatto–Legendre collocation points, while the pressure and the rate
of deformation tensor are chosen at the interior Gauss–Lobbato–Legendre points. It is worth
pointing out that the above choice of the approximation spaces for the velocity and extra
stress (and also for the pressure and the rate of deformation tensor) has obvious advantages
from the point of view of implementation on the computing program because no interpolations
are required between the velocity and extra stress grids. Of course, there are no interpolations
required between the pressure and the rate of deformation tensor grids as well.
We now insert the velocity, pressure, extra stress and the rate of deformation tensor ap-

proximations (36)–(39) into Equations (29)–(32) and the discrete equations are generated
by choosing appropriate test functions �ui ∈Vh0 and ��ij ∈Vh, whose values at the point (�i; 
j)
are unity and zero at all other Gauss–Lobatto–Legendre points, and test functions q∈Qh0

and �dij ∈Qh, whose values are unity at the point (�i; 
j) and zero at all other interior Gauss–
Lobatto–Legendre points. In this way, we obtain the discretizational system of equations

Au −DTp=f (40)

−D · u=0 (41)

C�= g (42)

Ed= h (43)

where A is the discrete Helmholtz operator, D is the discrete gradient operator, C is the
stress tensor matrix, E is the deformation tensor matrix and f; g and h are the right-hand side
vectors, which are incorporated with boundary conditions.
It should be noted that in Equations (40)–(43) the linear operator, such as the second-order

viscous operator, is treated by an implicit approach, while the non-linear operator, such as an
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inertia term, is conveniently treated in an explicit fashion. And the �rst-order derivatives @=@t
in Equations (29) and (31) are calculated by the �rst-order backward Euler time marching
scheme. Of course, other temporal discrete schemes can be used here. For the technical details
of the implementation of the temporal discrete schemes, the reader is referred to Reference
[28].

4. THE UZAWA ITERATIVE METHOD

In this section, the Uzawa procedure will be used to decouple the pressure and velocity
computations [29]. In this way, a saddle point problem will be replaced by two symmetric
positive (semi)-de�nite systems [30].
We begin with a decoupling of the original problem (40)–(41) into two positive semi-

de�nite symmetric forms, one for the velocity u and one for the pressure p. First, for each
of the velocity components ui from the momentum equations, we formally solve

ui=A−1DT
i p+ A−1fi; i=1; 2 (44)

We then substitute (44) into the continuity equation (41) to obtain the following equation for
the pressure:

(D1A−1DT
1 +D2A−1DT

2 )p− (D1A−1f1 +D2A−1f2)=0 (45)

Hence, the conservation equations (40) and (41) can be recast into the following equivalent
equations for the velocity and pressure:

Aui =DT
i p+ fi; i=1; 2 (46)

Sp=G (47)

where the discrete pressure matrix is

S=D1A−1DT
1 +D2A−1DT

2 (48)

which is symmetric positive de�nite and

G=−(D1A−1f1 +D2A−1f2) (49)

We make several observations about these matrices. First of all, since matrices A and S
are symmetric and positive (or semi)-de�nite, standard elliptic solvers, such as the conjugate
gradient iteration technique, can readily be applied. Secondly, since the velocity and pressure
in Equations (46) and (47) are completely decoupled in the solution process, we can �rst solve
Equation (47) for the pressure p and then solve Equation (46) for each velocity component
ui with p known. Similarly, we can solve Equations (42) and (43), with ui known, for the
components of the stress �ij and the rate of deformation dij, respectively. Finally, it should
be noted that the pressure matrix S is completely full due to the embedded inverse of A,
and, therefore, a nested iterative approach proposed in Reference [25] is required to solve
Equation (47).
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Using the preconditioned conjugate gradient method (PCG) to solve this system is well
documented in references (see References [24, 25]) and suitable preconditioners have been
advocated which yield e�cient numerical algorithms. In this paper, we use a preconditioner,
which changes dynamically in time, taking into account the number of PCG iterations required
for convergence at each time step for the current Weissenberg number. The preconditioner
is based on the pressure matrix evaluated at a given Weissenberg number. Further details
regarding the choice of preconditioners can be found in Reference [25].
Finally, the numerical procedure proposed in this paper can be summarised as follows:
• given an initial approximation of (u0; p0; �0; d 0);
• determine the velocity un and the pressure pn by solving Equations (46) and (47) with
�n−1 and d n−1 known;

• determine the stress �n by solving Equation (42) with un known;
• determine the rate of deformation tensor dn by solving Equation (43) with un known;
• recalculate all variables again and stop when a steady-state solution is obtained.

5. RESULTS AND DISCUSSION

A standard test problem for the study of viscoelastic �ow behaviour is the entry �ow in a
symmetric planar contraction channel. This geometry is popular since it is of technological
importance for the polymer processing industry and also exhibits signi�cant �ow variation with
changes in �uid elasticity. In this paper, we consider a fully developed Poiseuille �ow through
a channel with an abrupt symmetric four-to-one contraction. The di�culty of the contraction
problem is that a singular solution exists, which is caused by the geometric singularity at the
re-entrant corner. As the �uid elasticity is increased, such a singularity becomes stronger in
the viscoelastic �ow than that in the Newtonian �ow [31]. This may be the reason behind its
choice as a benchmark problem in the non-Newtonian �ows.
Figure 2 shows a schematic diagram of a fully developed Poiseuille �ow through the abrupt

four-to-one contraction channel. Since the geometry is assumed to be symmetric about the
centre line y=0, it is only needed to consider the lower half of the channel. In this paper, the
height of the out�ow half channel is taken as the unit, i.e. L=1:0, (the characteristic length)
and the height of in�ow channel is taken to be H =4L, so the ratio is a= 1

4 . The length of
the in�ow channel is equal to the length of the out�ow channel, and it is taken to be 16 in
this paper. The Oldroyd-B �uid with �=1=9 is chosen to be a viscoelastic model.

D

L

H

A

C

B

Figure 2. Schematic diagram of 4 : 1 planar contraction channel �ow geometry.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:323–348



336 S. MENG, X. K. LI AND G. EVANS

Table I. Velocity boundary conditions.

In�ow u= 3
128 (16− y2)
v=0

Out�ow u= 3
2 (1− y2)
v=0

Boundary parallel to x-axis u=0
v=0

Boundary parallel to y-axis u=0
v=0

Axis of symmetry v=0
@u=@y=0

Table II. Stress boundary conditions.

In�ow �xx =2We(1− �)(@u=@y)2

�yy=0
�xy =(1− �)@u=@y

Boundary parallel to x-axis �xx =2We(1− �)(@u=@y)2

�yy=0
�xy =(1− �)@u=@y

Boundary parallel to y-axis �xx =0
�yy=2We(1− �)(@v=@x)2

�xy =(1− �)@v=@x

Axis of symmetry �xy =0

In this paper, we impose a fully developed Poiseuille �ow at the inlet and outlet boundaries
in order to ensure the mass is conserved in a discrete sense, and the no-slip conditions u= v=0
are also applied on the solid wall. We assume that the �ow �eld is symmetric about the
x-axis; hence, the boundary conditions for the velocity should be v=0 and @u=@y=0 on the
central line. The details of the velocity boundary conditions are shown in Table I.
The boundary conditions for the stresses along the solid wall and inlet are derived from

the steady-state constitutive equations which are shown in Table II. At the exit the stress
boundary conditions are de�ned as

@�xx
@x

=
@�yy
@x

=
@�xy
@x

=0 (50)

To illustrate numerical simulations for the symmetric planar contraction channel �ow the
spectral element method combined with EVSS approach proposed in the previous section
is employed. Based on the geometry shown in Figure 2, two di�erent meshes, depicted in
Figures 3 and 4 are used in the spectral element approximations. Figure 3 shows Mesh I
which is �ve elements, on each element there are 13× 5 collocation points in the x and y
directions, respectively. Figure 4 shows Mesh II in which there are three elements with 19× 7
collocation points in the x and y directions, respectively, on each element. Characteristic data
of these meshes are listed in Table III, which indicates the total number of degrees of freedom
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Figure 3. Spectral element mesh generation: Mesh I.

Figure 4. Spectral element mesh generation: Mesh II.

Table III. Spectral element mesh characteristic data.

Degree of freedom Mesh I Mesh II

velocity 281 373
extra stress tensor 281 373
pressure 165 255
deformation tensor 165 255
Size of corner element x× y 0:373× 0:172 0:171× 0:085

for the velocity, pressure, extra stress and deformation tensors. The mesh is concentrated on
the corner where the smallest rectangles are 0:373× 0:172 for Mesh I and 0:171× 0:085 for
Mesh II. In a time-dependent simulation, the steady-state solution is supposed to be attained
when residuals of the velocity and stress become smaller than some appropriate criterion. In
this paper, we choose such a value as 10−5, a smaller tolerance provides no further insight
into the method. It should be noted that the present simulations are explicitly time dependent
so that steady-state convergence is dependent on the physical phenomena and independent of
the size of time steps, though the total computing time varies with the time steps.
We �rst validate the spectral element algorithm with a Newtonian �ow, i.e. �1 = 0 and

compare the quality of the numerical solutions on the Meshes I and II at Re=1. Figures 5
and 6 show the �ow streamlines on Meshes I and II, respectively. Here we �nd agreement on
two meshes, hence, convergence with mesh re�nement is con�rmed. Figures 7 and 8 show
the contours of the velocity component u with Meshes I and II, respectively. These contour
plots indicate that there are no signi�cant di�erences observed on the solutions or convergence
patterns between the use of the two meshes. Hence, Mesh I has been used throughout unless
stated otherwise.
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0.764
0.645

0.5260.408
0.289

0.17

Figure 5. Streamlines for the Newtonian �ow with Mesh I.

0.888

0.771
0.653

0.5360.419
0.302

0.0671

Figure 6. Streamlines for the Newtonian �ow with Mesh II.

0.149

0.299

0.6 1.05 1.2 1.35

Figure 7. Contour plot of the velocity component u for the Newtonian �uid with Mesh I.

0.141

0.292

0.594 0.896 1.05 1.2 1.35

Figure 8. Contour plot of the velocity component u for the Newtonian �uid with Mesh II.

Now we use the spectral element approximations to simulate �ow through the four-to-
one planar contraction channel with the Oldroyd-B �uids according to the values of the
Weissenberg number We in the analysis. First, the streamlines are plotted in Figure 9 for
We=0:1; 0:4; 0:8 and 1.2, respectively, at Re=1:0. By inspection of Figure 9, we are able to
see that the size of the vortex corner is diminished when the Weissenberg number increases.
Here, the salient corner vortices do not re�ect signi�cant vortex enhancement. Including inertia
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Figure 9. Streamline comparisons with increasing We at Re=1:0.

(Re=1:0) has the e�ect of pushing the salient corner vortex into the corner recess and the
onset of a lip vortex is delayed. This phenomena has been observed in the experimental
measurements for planar contraction �ows by Walters et al. [32], where they found that
the corner vortex slightly diminishes in size when We increases for a Boger �uid, which is
often identi�ed with an Oldroyd-B �uid because it is non-shear thinning. Hence, the present
numerical simulations shown in Figure 9 are consistent with the experimental observations
within a range of We similar to their �ow visualizations.
To investigate the in�uence of the Weissenberg numbers on the pattern of the streamlines,

the cell vortex size determined by the parameters of lx and ly is presented in Table IV
with di�erent We, where lx denotes the distance from the salient corner to the point where
the separation line reaches the wall parallel to the x-axis, and ly denotes the distance from
the salient corner to the point where the separation line reaches the wall parallel to the y-
axis. It is clearly shown that when We increases from 0 to 0.6, the length of the corner
vortex, lx, remains constant, while the width of the corner vortex, ly, increases. But when
We increases from 0.7 to 1.2, lx decreases slightly, while ly remains constant. To compare
with published results, the cell vortex size is plotted as a function of the number of We in
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Table IV. Values of lx; ly and ’max for various We numbers with Mesh I.

We lx ly ’max

0.1 1.3093 1.086 1.0010672
0.2 1.3093 1.108 1.0010955
0.3 1.3093 1.129 1.0011469
0.4 1.3093 1.140 1.0011860
0.5 1.3093 1.151 1.0012160
0.6 1.3093 1.151 1.0012207
0.7 1.229 1.162 1.0012093
0.8 1.229 1.173 1.0012238
0.9 1.229 1.173 1.0012011
1.0 1.229 1.173 1.0011356
1.1 1.176 1.173 1.0010624
1.2 1.176 1.173 1.0009739
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Figure 10. The size of the length lx as function of We, where ∗ is the spectral element approximation;
by Williams [14, 15]; O by Matallah [33]; ◦ by Sato et al. [35]; + by Carew et al. [34].

Figure 10. It is shown that the behaviour of the spectral element solutions is comparable to the
observations of Matallah [33] and Williams [14, 15]; however, somewhat di�erent from the
results of Carew [34] and Sato [35]. In the results of the present simulations, it is found that
the maximum values of the stream functions are nearly independent of We when 06We61:2.
This is shown in Table IV. However, the minimum values of the stream function decrease
when We is increased. From the numerical calculations, it is found that when We=0:1, the
minimum value of the stream function is �min =−0:0066, while it is �min =−0:0107, when
We=1:2.
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Figure 11. Comparison of contours for stress �xx with di�erent We when Re=1:0.

Figure 11 shows a comparison of stress component �xx with di�erent Weissenberg numbers
from We=0:1 to 1.0. It is interesting to note that increasing the number of We results
in almost the same pattern for the stress �xx contour pro�les. It is clearly seen from these
contours that the maximum values of �xx are always located at the re-entrant corner within the
boundary layers and the minimum values are observed upstream of the re-entrant corner. As
expected, the maximum values of �xx increase with increasing We. This can been seen more
clearly in Figure 12, in which the stress �xx is plotted along the line of y=−1 with di�erent
Weissenberg numbers. It is found that for all numbers We the positions of the maximum
values of the stress �xx are always located at the point x=0, which is the position of the
re-entrant corner. However, it should be noted that the magnitudes of the maximum values of
stress �xx are signi�cantly di�erent. This is clearly shown in Figure 12, where the maximum
value of �xx is 4.6493, when We=0:1, but is over 54.2844, when We=1:0. This indicates
that the maximum value of the stress �xx is more sensitive to the change of the Weissenberg
numbers.
Figure 13 shows the contour plots for the shear stress �xy with di�erent Weissenberg

numbers at Re=1:0. Unlike the dramatic changes in the magnitude of the stress �xx in the
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Figure 12. Comparison of the plots of �xx along the line y=−1 with di�erent numbers
of We, where (a) We=0:1, (b) We=0:4, (c) We=0:8 and (d) We=1:0 when Re=1:0.

Note that the �gures are plotted in di�erent scales.

previous �gure, we found that the values of the shear stress �xy are slightly di�erent as We
increases. However, it is seen that there exists a small hump from the re-entrant corner. Such
a hump is enlarged with increasing We. It should be noted that this hump behaviour does not
show in other components of the stress.
To further interrogate the di�erences in solutions for the stress components �xy and �yy for

various Weissenberg numbers, we plotted these variables along the line y=−1 as shown in
Figures 14 and 15 and found that all maximum values for both �yy and �xy are located at the
re-entrant corner and are only slightly increased when We is increased. Actually, it is found
that the maximum value of �xy for We=0:1 is 4.5457, and it increases only to 4.9119 when
We=1:0. Similarly, the maximum value of �yy is 1.1530 for We=0:1, and is 1.5440 for
We=1:0. It is worth pointing out that these solutions are corroborated by the results obtained
in References [35].
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Figure 13. Comparison of contours for stress �xy with di�erent We when Re=1:0.

We now consider the vorticity e�ects resulting from di�erent Weissenberg numbers.
A comparison of the vorticity contours is illustrated in Figure 16, in which the Weissenberg
numbers are We=0:1; 0:4; 0:8 and 1:0, respectively, at Re=1:0 on Mesh I. Although we found
no signi�cant di�erence in the pattern of these vorticity contours, there is a di�erence in lo-
cations of the rounded protuberance vorticity behind the re-entrant corner. This indicates that
the vorticity has been slightly expanded when We increases. Such behaviour of vorticity has
been reported in Reference [35] for high Weissenberg numbers.
Finally, we consider the numerical e�ects upon the EVSS scheme for the spectral element

approximations. To do this, we therefore solve the benchmark problem described above by
using both spectral element method with and without the EVSS schemes. Figure 17 shows
the streamlines plotted with We=0:1; 0:4 and 0.8, respectively, at Re=1:0 for the solutions
without using EVSS technique. Great insight can be obtained if Figure 17 is viewed along
with Figure 9, where both �gures show the comparisons of the streamlines plotted with
di�erent Weissenberg numbers. Comparing theses two �gures, we found that the numerical
solutions (streamlines) are almost identical with the small Weissenberg numbers for both
methods, for instance, when We=0:1 and 0.4. However, when the Weissenberg number is
increased, it is found that the numerical solution with the EVSS scheme is more stable
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Figure 14. Comparison of the plots of �xy along the line y=−1 with di�erent numbers of We, where
(a) We=0:1, (b) We=0:4, (c) We=0:8 and (d) We=1:0 when Re=1:0.

than one without the EVSS. This is clearly shown in Figure 17, where some oscillations
appeared on the streamlines near the re-entrant, when We=0:8. Such solutions become more
and more oscillatory when We increases. In fact, we found that our numerical solutions
without the EVSS procedure are divergent, when the Weissenberg number is over We=0:8.
This phenomenon again demonstrates that the EVSS technique improves the numerical stability
of the spectral element approximations in simulations of the contraction channel �ows.

6. CONCLUSIONS

A spectral element method combined with the elastic viscous splitting stress method has been
proposed to simulate an incompressible viscoelastic �uid in the planar contraction channel
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Figure 15. Comparison of the plots of �yy along the line y=−1 with di�erent numbers of We, where
(a) We=0:1, (b) We=0:4, (c) We=0:8 and (d) We=1:0 when Re=1:0.

�ow. In this algorithm, a new variable, the rate of deformation tensor, has been introduced into
the spectral element discretization formulations in order to enhance the stability and accuracy
of the scheme. The pressure is obtained from the continuity and momentum equations based on
the Uzawa iterative algorithm. The velocity, extra stress and the rate of deformation tensor are
solved from the momentum and constitutive equations by the spectral element approximation
with the EVSS procedure. Although in this paper the stress approximation space is chosen
to be the same as the velocity space, and the rate of deformation approximation space is the
same as the pressure space, it should be noted that a general guidance is still often lacking
in what types of interpolations for the stress and the rate of deformation are still admissible.
In this paper, it has been shown that the spectral element method with the EVSS procedure

is an e�ective practical approach for computing �ows of an Oldroyd-B �uid. The numerical
investigations have been applied to the planar four-to-one contraction channel �ow problems
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Figure 16. Comparison of vorticity contour plots with di�erent We when Re=1:0.

with various Weissenberg numbers. The simulation results indicated that, for an Oldroyd-B
model, as the elasticity parameter We is increased the size of the corner vortex compares
well with experimental measurements and other numerical predictions. The in�uence of the
Weissenberg number We on the stress components is also discussed based on the numerical
solutions. It is found that the maximum values of the stress are located at the re-entrant
corner within the stress boundary layers. The values of �xx are dramatically increased as We
increases, while the values of �xy and �yy are not sensitive to the change of We. Furthermore,
the vorticity separation mechanism is also observed which grows with elasticity from the re-
entrant corner. This observation is supported by the work of Sato et al. [35]. It should be
noted that in all our calculations at a �xed level of inertia of Re=1:0 and with increasing
We, the spectral element approximation takes a very long time to reach a steady-state solution
because of the time-dependent nature of the �uid motion and the instability of the extra stress
started with an instantaneous increase of We. So the attempt to seek a higher upper limit on
We has been stopped at the moderately value We=1:2 for the present method, further work
is needed to increase the limit of We.
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Figure 17. Streamlines for We=0:1, We=0:4 and We=0:8, respectively,
at Re=1:0 without using EVSS scheme.
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